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Olfactory receptor OR2AT4 regulates human hair
growth
Jérémy Chéret1, Marta Bertolini1,2, Leslie Ponce1, Janin Lehmann1, Teresa Tsai3, Majid Alam1, Hanns Hatt3 &

Ralf Paus4,5

Olfactory receptors are expressed by different cell types throughout the body and regulate

physiological cell functions beyond olfaction. In particular, the olfactory receptor OR2AT4 has

been shown to stimulate keratinocyte proliferation in the skin. Here, we show that the

epithelium of human hair follicles, particularly the outer root sheath, expresses OR2AT4, and

that specific stimulation of OR2AT4 by a synthetic sandalwood odorant (Sandalore®) pro-

longs human hair growth ex vivo by decreasing apoptosis and increasing production of the

anagen-prolonging growth factor IGF-1. In contrast, co-administration of the specific OR2AT4

antagonist Phenirat® and silencing of OR2AT4 inhibit hair growth. Together, our study

identifies that human hair follicles can engage in olfactory receptor-dependent chemo-

sensation and require OR2AT4-mediated signaling to sustain their growth, suggesting that

olfactory receptors may serve as a target in hair loss therapy.
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O lfactory receptors (ORs) are part of an evolutionarily
ancient chemosensory signaling system that long pre-
dates the development of smell sensation (olfaction)1–7.

OR expression is not restricted to the nasal epithelium, but it is
also present in several other human tissues8–15. Non-olfactory
roles of ORs have also been described in human cell physiology16,
such as in spermatozoa10,17 and enterochromaffin cells of the
gut18.

Interestingly, several ORs are also expressed in human epi-
dermis19,20, including OR2AT4, whose selective activation by the
synthetic sandalwood odorant (Sandalore®) promotes human
epidermal keratinocyte migration and proliferation in vitro and
wound re-epithelialization ex vivo20. Sandalore®-induced Ca2+

signaling could be blocked in OR2AT4-transfected Hana3A cells
when this was co-applied at equimolar concentrations with the
potent competitive OR2AT4 antagonist in presence of Sanda-
lore®, Phenirat®20. Given the intimate connections between hair
growth and wound healing21–24, we hypothesized that this OR
might also impact on human hair growth. This hypothesis was
investigated by immunohistology, qRT-PCR, western blot,
microarray, phospho-kinase assay, and gene silencing in healthy,
organ-cultured human scalp hair follicles (HFs)25.

The present study shows that human HFs express a specific
OR, namely, OR2AT4. The activation of this OR by its specific
agonist, Sandalore®, prolongs anagen maintenance ex vivo by
decreasing hair matrix keratinocytes apoptosis and increasing the
production of IGF-1 in the outer root sheath (ORS). The anagen-
prolonging effect mediated by Sandalore® is OR2AT4 dependent,
as confirmed by co-administration of Sandalore® with the
OR2AT4 competitive antagonist, Phenirat®, as well as the specific
knock-down of OR2AT4 in human HFs. Taken together, we
show that human HFs can engage in chemosensation and that the
specific activation of OR2AT4 is required to sustain HF growth.

Results
Human HFs express OR2AT4. Immunofluorescence microscopy,
qRT-PCR, and western blot analysis revealed that human scalp HFs
in the anagen VI stage of the hair cycle26,27 express OR2AT4 at the
transcript and protein level (Figs. 1a, 2a–f). Interestingly, OR2AT4
protein was predominantly expressed by suprabulbar keratinocytes
of the proximal ORS (Figs. 1a, 2c), while hair matrix keratinocytes
also expressed low-level OR2AT4 protein (Figs. 1a, 2b), both in
healthy scalp skin in situ27 (Fig. 2a–c) and in amputated micro-
dissected anagen HFs ex vivo25,26 (Fig. 1a). Of note, OR2AT4
expression was downregulated during spontaneous, apoptosis-
driven HF regression (catagen)26,27 (Fig. 2d–g). Thus, using the
primary antibody employed here20, intrafollicular OR2AT4
expression is strikingly restricted to defined epithelial HF com-
partments and is hair cycle dependent.

OR2AT4 activation by Sandalore® prolongs anagen ex vivo.
When microdissected, organ-cultured human HFs25 were treated
with Sandalore® (500 μM, for details, see Supplementary Note 1
and Fig. 3a–e) for 6 days, this selective OR2AT4 agonist20 sig-
nificantly upregulated intrafollicular OR2AT4 protein expression
(Fig. 3d), demonstrating receptor functionality and that OR2AT4
expression underlies a positive feedback regulation.

Importantly, Sandalore® treatment retarded spontaneous HF
regression (catagen development)26,27 ex vivo (Fig. 1b) and
significantly reduced hair matrix keratinocyte apoptosis, as shown
by quantitative (immuno-)histomorphometry for TUNEL+
(Fig. 1c) or cleaved caspase 3+ cells (Supplementary Fig. 1a) in
the hair matrix. These effects were partially counteracted by co-
administering the competitive OR2AT4 antagonist, Phenirat®20,
with Sandalore® (Fig. 1b, c, Supplementary Fig. 1a). When tested

alone, Phenirat® tended to be weakly hair growth inhibitory
(Supplementary Fig. 2a, b and Supplementary Note 2 for
extended discussion).

Next, we examined two key growth factors that control the
anagen-catagen transformation during human HF cycling, i.e.,
catagen-promoting TGF-β2 and anagen-maintaining IGF-1; these
growth factors are prominently produced by those proximal ORS
keratinocytes28–33 that express OR2AT4 maximally. This analysis
revealed a significant decrease in TGF-β2 (Supplementary Fig. 3a)
and a significant increase of IGF-1 (Fig. 1d) protein expression in
the proximal ORS after long-term Sandalore® treatment ex vivo.
The co-administration of OR2AT4 antagonist, Phenirat®, sig-
nificantly reversed the Sandalore®-induced intrafollicular upre-
gulation of IGF-1 (Fig. 1d) but did not affect TGF-β2 expression
(Supplementary Fig. 3a).

Anagen-prolonging effect of Sandalore® is OR2AT4 specific.
Subsequently, we selectively silenced OR2AT4 by siRNA
administration to organ-cultured human scalp HFs
ex vivo32,34,35, as documented by significantly reduced intra-
follicular OR2AT4 mRNA and protein expression (Fig. 4a, b).
Despite the presence of excess ligand (Sandalore®), OR2AT4
knock-down significantly promoted catagen induction compared
to HFs treated with scrambled oligos (Fig. 5a), decreased IGF-1
protein expression (Fig. 5b), and enhanced hair matrix kerati-
nocyte apoptosis (Fig. 5d, e). Instead, hair matrix keratinocyte
proliferation (Fig. 5c) or TGFβ2 protein expression in the ORS
(Supplementary Fig. 4a) remained unaffected. These data show
that the Sandalore®-induced hair growth stimulation documented
above is indeed OR2AT4 dependent, rather than due to off-target
effects of this synthetic odorant and that OR2AT4 signaling is
required for anagen maintenance.

Sandalore®-mediated HF response involves different pathways.
Microarray analysis independently confirmed anti-apoptotic
effects of Sandalore® (Fig. 6, Supplementary Fig. 5, and Supple-
mentary Data 1), since transcripts of pro-apoptotic genes were
significantly downregulated (e.g., TP53AIP1: -10.27×), while anti-
apoptotic genes were significantly upregulated (e.g., FGF-2:
+7.83×) in HFs treated short term with Sandalore® (6 h, Sup-
plementary Fig. 5a, b and Supplementary Data 1). Interestingly,
an additional microarray analysis of organ-cultured scalp HFs in
which OR2AT4 had been knocked down ex vivo showed that
transcription of the IFI6 (G1P3) gene, whose silencing increases
keratinocyte apoptosis36, was downregulated by administering
OR2AT4 siRNA for 6 h, compared to scrambled oligonucleotide-
treated HFs (Supplementary Fig. 6a, b and Supplementary
Data 1). This corresponds well to our observation that
OR2AT4 silencing increases apoptosis of HF matrix keratinocytes
(Fig. 5d, e) and further underscores the importance of continued
OR2AT4 stimulation by as yet unknown endogenous ligands to
suppress apoptosis in the hair matrix of human anagen HFs.

In addition, microarray analysis revealed that Sandalore®

promotes signaling along the IGF pathway (see Fig. 6a–c,
Supplementary Fig. 5a-b, and Supplementary Data 1), in
agreement with the protein expression data (Fig. 1d). Indeed,
genes involved in IGF1R signaling cascade as well as in IGF
transport (e.g., PAPPA [10.8× upregulated] that cleaves IGFBP4
to release IGF37, or PCSK-1 [33.6× upregulated] which is involved
in insulin synthesis from proinsulin38) were strongly upregulated
(Fig. 6a–c, Supplementary Fig. 5, and Supplementary Data 1).
This promotion of IGF signaling pathway as well as the
upregulation of FGF-7 (2.75× increase), another anagen-
promoting growth factor39 (Fig. 6a–c, Supplementary Fig. 5,
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and Supplementary Data 1) are perfectly in line with anagen
prolongation by Sandalore®.

Intriguingly, the strongest transcriptional upregulation (77.6×
increase) was seen for dermcidin, a potent antimicrobial peptide
with broad bactericidal activities that reportedly is only produced
by sweat gland epithelium in human skin40,41. However,
quantitative immunohistomorphometry confirmed that dermci-
din protein is also upregulated by Sandalore® in the epithelium of
human scalp HFs (Supplementary Fig. 7a and Table 1). This

demonstrates that human HFs also express dermcidin and raises
the fascinating question whether OR2AT4 may act as a
chemosensory receptor for selected bacterial metabolites, in
response to which intrafollicular dermcidin production may be
upregulated to manage the complex HF-microbiome42,43.

When selected signaling pathways recognized to be involved in
OR-mediated signaling1,9,44–47, were studied by phospho-kinase
assay9, Sandalore® upregulated several expected kinase activities
(Fig. 7a and Table 1). In line with our previous results (Fig. 1c, d),
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Fig. 1 Hair follicles express OR2AT4, which specific stimulation endorses IGF-1-dependent anagen prolongation. a Representative images showing OR2AT4
protein expression (using the previously published OR2AT4 antibody20) in proximal outer root sheath and hair matrix keratinocytes of human scalp
microdissected hair follicles. b Hair cycle score and staging were evaluated in treated and vehicle HFs after 6 days of culture using Ki-67/TUNEL
immunofluorescence and Masson–Fontana histochemistry26. Mean ± SEM, n= 16–24 HFs from three donors (independent experiments), Kruskal–Wallis
test (P= 0.0923, n.s not significant) and Dunn’s multiple comparisons test as post hoc test, ns not significant, Mann–Whitney test, *P < 0.05.
Representative pictures of Masson–Fontana histochemistry in vehicle and treated HFs after 6 days of treatment. c Apoptotic hair matrix keratinocytes were
counted in the hair matrix of all treated and vehicle HFs. Representative pictures of Ki67/TUNEL. Mean ± SEM, n= 18–21 HFs from three donors
(independent experiments), Kruskal–Wallis (P= 0.005) test and Dunn’s multiple comparisons test as post hoc test, #P < 0.05, ##P < 0.01, ###P < 0.001.
d IGF-1 expression was measured in ORS keratinocytes in treated and vehicle HFs. Representative pictures of IGF-1 immunofluorescence. IGF-1 expression
was quantified in ORS keratinocytes in treated and vehicle HFs using ImageJ. Mean ± SEM, n= 18–21 HFs from three donors (independent experiments),
Kruskal–Wallis (P < 0.001) and Dunn’s multiple comparisons test as post hoc test, ##P < 0.01, ###P < 0.001, and Student’s t-test, *P < 0.05. e Hair cycle
score and staging were measured in treated and vehicle HFs after 6 days of culture. Representative pictures of vehicle and treated HFs after 6 days of
treatment. Mean ± SEM, n= 22–29 HFs from three donors (independent experiments), Kruskal–Wallis test (P= 0.1434) and Dunn’s multiple comparisons
test as post hoc test, n.s not significant, and Student’s t-test after performing an iterative Grubbs outlier test, *P < 0.05. CTS connective tissue sheath, DP
dermal papilla, HM hair matrix, ORS outer root sheath, IRS inner root sheath, HS hair shaft. Scale bar: 100 µm
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this included increased phosphorylation of proline-rich
AKT1 substrate 40 (PRAS40), whose expression is induced by
IGF-148,49, while Sandalore® reduced phosphorylation of p53
(S46), which is highly phosphorylated in apoptotic cells50 (IGF-1
is a key apoptosis suppressor51–53).

Anagen-prolonging effect of Sandalore® implicates IGF-1.
Therefore, we next probed the hypothesis that, mechanistically,
Sandalore® stimulation of OR2AT4 may retard catagen and
suppress HF apoptosis by upregulating intrafollicular IGF-1-
mediated signaling. Indeed, the co-administration of IGF1-
neutralizing antibody with Sandalore® significantly reversed the
catagen-promoting effect of IGF-1 neutralizing antibody alone
(Fig. 1e; for extended discussion, see Supplementary Note 3).
Mechanistically, this suggests that OR2AT4 activation mainly

prolongs anagen via upregulating IGF-1 expression and secretion
by OR2AT4+ keratinocytes in the proximal ORS (Figs. 1d, 8).
While IGF-1 signaling is known to be involved in olfactory bulb
development and function54–56, the current study reveals that
IGF-1 expression/secretion in human epithelial tissue is also
controlled by OR-mediated signaling and demonstrates that
IGF-1 production underlies an OR2AT4-controlled chemosen-
sory regulation.

Discussion
Collectively, these data show that the growth, cyclic transforma-
tion, epithelial cell apoptosis, and IGF-1 production of a dynamic
human (mini-)organ, i.e., scalp HFs29, underlies an OR-
dependent chemosensory control. Thus, human HFs can
“smell” in the sense that they recruit the evolutionarily oldest and
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largest of all receptor families1,2 for regulating key organ func-
tions (for extended discussion, see Supplementary Discussion 1).
Moreover, we identify one specific OR, namely, OR2AT4, whose
stimulation with a synthetic agonist (Sandalore®)20 and whose
selective silencing profoundly impacts on human hair growth
ex vivo primarily via regulating expression and secretion of the
key hair growth-promoting factor, IGF-1 (Fig. 8 and Supple-
mentary Discussion 2). However, while IGF-1-mediated signaling
is required for human hair growth promotion by Sandalore®

(Fig. 1e), our phospho-kinase activity and gene expression pro-
filing results suggest that additional pathways (e.g., p38a/ERK1/2/
MSK1/2, HB-EGF/EGF-R, and FGF-7 pathways (Fig. 6, Supple-
mentary Figs. 5, 6, and Supplementary Data 1)) are involved that
deserve further exploration57–61.

Perhaps most intriguingly, our silencing data suggest that
OR2AT4-mediated signaling is required for maintaining human
scalp HFs in anagen and for suppressing keratinocyte apoptosis in
the hair matrix (Fig. 5d, e). This begs the question: What are the
endogenous intrafollicular OR2AT4 ligands in human HFs? The
endogenous ligands for human ORs remain to be definitively
clarified, and those for OR2AT4 are unknown. Candidates

include molecules with Sandalore®-like structure, short-chain
fatty acids13, and—namely, in view of our dermcidin results
(Supplementary Fig. 7a and Table 1)—metabolites of resident HF
microbiota42,43.

Taken together, our ex vivo data suggest that olfactotherapy by
topically applied cosmetic OR2AT4 ligands like Sandalore® may
promote human hair growth by prolonging anagen and inhibiting
premature catagen development (e.g., in androgenetic alopecia
and telogen effluvium).

Thus, using scalp HFs as accessible and tractable model organs
and by selectively targeting OR2AT4, our study reveals an
important, translationally relevant frontier in the OR-dependent
chemosensory physiology of peripheral human tissues.

Methods
Human samples. Temporal and occipital human scalp skin was obtained from
healthy donors (38–69 years old) undergoing routine face-lift surgery after
informed consent and ethical approval (University of Muenster, no. 2015-602-f-S).
No sample size calculation was performed. Number of three different donors was
used due to the small availability of the tissue used in the study. This number of
three was used in many previous studies, given statistical significance.

Tissue specimens. Scalp skin samples were either cut into small pieces (4 mm),
embedded into OCT, and frozen in liquid nitrogen, or processed for HF
microdissection25.

HF organ culture. Human scalp samples were obtained 1 day after face-lifting
procedure (i.e., after overnight transport from collaborating surgeons) and used at
the same day for microdissecting human anagen VI scalp HFs. The HF micro-
dissection technique employed for setting up the classical Philpott assay25,26,62 used
in the current study, removes all perifollicular tissue with the sole exception of the
HF’s dermal sheath, and thus does not contain any other skin appendage structures
(e.g., eccrine gland elements)25. Microdissected human scalp HFs were cultured at
37 °C with 5% CO2 in a minimal media of William’s E media (WEM, Gibco, Life
Technologies) supplemented with 2 mM of L-glutamine (Gibco), 10 ng/ml
hydrocortisone (Sigma-Aldrich), 10 μg/ml insulin (Sigma-Aldrich), and 1% peni-
cillin/streptomycin mix (Gibco)25,26,62. After microdissection, the HFs were first
incubated in WEM for 24 h for re-equilibration. HFs after quality control (fully
pigmented and presence in anagen VI phase) were randomly allocated to the
different experimental groups.

Chemical stimulation of human microdissected HFs. After 24 h, WEM medium
was replaced and HFs were treated with vehicle (0.1% DMSO), Sandalore® (50 and
500 µM; see Fig. 3 and Supplementary Note 1, Symrise), Phenirat® (in a ratio 1:1 to
the agonist, Symrise), or Sandalore®+Phenirat® for 6 days for (immuno-)histology
or 6 h for qRT-PCR.

For the IGF-1 neutralizing antibody experiments, IGF-1 neutralizing antibody
(1 µg/ml, ab9572, Abcam) was added 30 min before adding Sandalore® to the
corresponding groups. Culture medium was replaced every second day and after
6 days. HFs were then embedded in cryomatrix (Fisher Scientific), and snap frozen
in liquid nitrogen for (immuno-)histology.

SiRNA transfection-knockdown OR2AT4 in organ-cultured HFs. Human ana-
gen VI HFs were transfected using a commercial siRNA reagent system (Sc-45064,
Santa Cruz) following the manufacturer’s instructions32,34,35. Briefly, stock solu-
tions (10 µM) of siRNA OR2AT4 (gift from Prof. Hanns Hatt20) and siRNA
control (scrambled oligo) were prepared using RNAse-free water. HF transfection
was performed 24 h after microdissection for 6 h using either 100 mM
OR2AT4 siRNA or control scramble siRNA. After 24 h of incubation with fresh
WEM medium, HFs were collected per group in RNA later and stored at 4 °C for
further RNA extraction and qRT-PCR analysis or immediately frozen in liquid
nitrogen and stored at −80 °C for microarray analysis. Finally, fresh WEM medium
was replaced every second day and after 5 days of culture, HFs were snap frozen in
OCT for further quantitative (immuno-)histomorphometry analysis.

Histology. For histochemical visualization of melanin, Masson–Fontana staining
was performed on frozen sections. Melanin was stained as brown dots26.

Immunofluorescence. OCT-embedded samples were sectioned (6 µm thickness
for HF and 7 µm thickness for skin) with a Leica cryostat. For primary OR2AT420

(custom designed rabbit polyclonal antibody generated against the C-terminus
sequence of OR2AT4 (Eurogentec, Liège, Belgium)), or cleaved-caspase-3 (#9661,
clone Asp175, Cell Signaling) antibodies staining, tissue cryosections were fixed in
4% paraformaldehyde, pre-incubated with 10% of goat serum (for OR2AT4) or 5%
goat serum +0.3% Tritton X-100 (for cleaved-caspase 3) and incubated with the
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corresponding primary antibody at 4 °C overnight (1/100 for OR2AT4 and 1/400
for cleaved-caspase 3). Secondary antibody incubation was performed at RT for 45
min. Counterstaning with DAPI (1 µg/ml) was performed to visualize nuclei.

Dermicidin protein was detected using tissue sections fixed in 4%
paraformaldehyde, pre-incubated with 10% of goat serum, and incubated with a
mouse anti-human Dermcidin antibody (Novus Biologicals, G-81, 1:200).
Secondary antibody (Goat anti-mouse Alexa fluor 488) incubation was performed

at room temperature for 45 min. Counterstaning with DAPI (1 µg/ml) was
performed to visualize nuclei.

For TGFβ2 (Sc-90, Santa Cruz) and IGF-1 (Sc-1422, clone G-17, Santa
Cruz31,32), tissue cryosections were fixed in acetone and endogenous peroxidase
activity was blocked with 3% of H2O2 (Merck Milipore). This step was followed by
an avidin-biotin blocking step (SP2001, Vectorlabs) and a preincubation with TNB
buffer (Tris HCl+NaCl+Casein). The corresponding primary antibody was
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incubated at 4 °C overnight (1/1000 for TGFβ2 and 1/250 for IGF-1). Secondary
antibody incubation was performed at RT for 45 min before using the Tyramide
signal amplification kit (NEL700001KT, Perkin Elmer). Counterstaning with DAPI
was performed to visualize nuclei.

To stain apoptotic and proliferating cells, we used the apoptag kit (Merck
Milipore) following the manufacturer’s protocol followed by Ki-67
staining25,26,33,63. Primary antibody was incubated overnight (Ki-67, M7240 Clone:
MIB-1, DAKO, 1/20) after the TdT-enzyme step. The secondary antibody was
incubated for 45 min at RT after the fluorescent-labeled anti-Digoxigenin step of
the apoptag kit. Counterstaning with DAPI was performed to visualize nuclei.
Negative controls were performed by omitting the primary antibody. Images were
taken using a Keyence fluorescence microscope BZ9100 (Osaka, Japan)
maintaining a constant set exposure time throughout imaging for further analysis.

Quantitative reverse transcriptase-PCR. Total RNA was isolated from whole
microdissected HFs using RNeasy Mini Kit (Quiagen) following the manufacturer’s
instructions described in the manufacturer’s protocol. RNA purity and con-
centrations were determined using the Nanodrop ND-1000 assay (Fisher Scien-
tific). Reverse transcription of the RNA into cDNA was performed using the
TetrocDNA Synthesis Kit (Bioline), according to the manufacturer’s instructions.
RNA concentrations were adjusted between 50 to 500 nM for each sample set to
allow further quantification comparison between samples and experiments after
qRT-PCR. Controls were performed using the housekeeping gene GAPDH. Real-

time quantitative polymerase chain reaction (qRT-PCR) was run in triplicate using
TaqMan Fast Advanced Master Mix Product Insert and gene Expression Assay
transcripts (Id: Hs01060665_g1 for ACTB, Hs02758991_g1 for GAPDH, and
Hs02339277_s1 for OR2AT4, Applied Biosystem) on the qTower2.2 thermocycler.
Real-time quantification plots and Ct values were collected and stored by the
qPCRsoft2.1 software. The amount of the transcripts was normalized to those of
the housekeeping gene using the ΔΔCT method using EXCEL.

Whole-genome microarray analysis. RNA isolation, sample processing, and
microarray analyses (Agilent Technologies), as well as statistical evaluation, were
performed by Arrows Biomedical GmbH (Muenster, Germany). Expressional
alteration was considered to be significant only when ≥1.8-fold and equidirectional
changes were observed in at least three of four patients (independent experiments).
An additional analysis has been performed using 5-fold and equidirectional
changes in the four different donors (independent experiments) in order to identify
the top up and downregulated genes.

Human phospho-kinase array. In order to gauge which signaling pathways are
regulated by the specific stimulation of OR2AT4, we performed a phospho-kinase
array9. Total protein was isolated from whole microdissected HFs using a specific
buffer from the Human Phospho-Kinase Array (ARY003B, R&D System), fol-
lowing the manufacturer’s protocol. Briefly, protein extracts were diluted and
incubated overnight with the Human Phospho-Kinase Array. The array was
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washed to remove unbound proteins, followed by incubation with a cocktail of
biotinylated detection antibodies. Streptavidin-HRP and chemiluminescent detec-
tion reagents were applied, and a signal was produced at each capture spot cor-
responding to the amount of phosphorylated protein bound.

Western blot analysis. Total protein was extracted from nine anagen and catagen
microdissected human scalp HFs. Protein concentrations were determined using a
Bradford assay (B6916, Sigma-Aldrich). Thirty micrograms of protein were sub-
jected to 4–15% Mini-PROTEAN® TGX™ Precast gel (#4561083, Bio-Rad) and
transferred to a nitrocellulose membrane (88018, Thermo Fisher Scientific), fol-
lowed by incubation with the corresponding primary antibodies (PA5-71599 for
OR2AT4, 1/1000, Thermo Fisher Scientific; and A3853 for Actin, 1/1000, Sigma-
Aldrich) overnight at 4 °C. After incubation with peroxidase-conjugated secondary
antibodies (WesternBreeze™ Chemiluminescent Kit, WB7106 and WB7104,
Thermo Fisher Scientific), the bands were visualized using Chemocam imager 6.0

(Intas, Germany). Protein expression levels were normalized to corresponding
actin levels. The uncropped blots are presented in the Supplementary Fig. 8.

Hair cycle score (HCS) and staging. HFs were microscopically evaluated for the
hair cycle staging analysis using Masson–Fontana histochemistry and Ki-67/
TUNEL immunostainings25,26. The HCS was also measured25,31, which consists of
assigning an arbitrary unit for each stage of the hair cycle (Anagen VI= 100; Early
catagen= 200; Mid-catagen= 300; and Late catagen= 400). After having classified
each HF according to its hair cycle stage, following the previously defined objective
classification criteria for organ-cultured human HFs26, for each experimental
condition, the mean HCS was calculated. The closer the mean is to 100, the higher
is the number of anagen VI HFs in a given group. The HCS provides a global read-
out parameter that looks at all HFs in a given experimental group and synthesizes
them into a single number, which reflects how close the majority of HFs is to either
anagen VI or catagen and also permits statistical analysis that it is not possible with

Table 1 OR2AT4 stimulation by Sandalore® treatment regulates different signaling protein phosphorylation pathways in human
HFs ex vivo

Proteins regulated under 50 µM Sandalore
stimulation

Type of regulation Proteins regulated under 500 µM Sandalore
stimulation

Type of regulation

p38α (T180/Y182) ↑(2,5) p38α (T180/Y182) ↑(1,8)
ERK1/2 (T202/Y204, T185/Y187) ↑(1,9) ERK1/2 (T202/Y204, T185/Y187) ↑(1,8)
EGFR (Y1086) ↑(3,2) EGFR (Y1086) ↑(2,6)
MSK1/2 (S376/S360) ↑(2,1) MSK1/2 (S376/S360) ↑(2,1)
PYK2 (Y402) ↑(4,7) PYK2 (Y402) ↑(2,2)
Hsp60 ↓(0,6)
JNK 1/2/3 (T183/Y185, T221/Y223) ↑(2,2)
AMPKα1 (T183) ↑(2,0)
PLC-γ1 (Y783) ↑(2,4)

Fgr (Y421) ↑(1,9)
PRAS40 (T246) ↑(1,9)
p53 (S392) ↓(0,5)
p53 (S46) ↓(0,6)
p53 (S15) ↓(0,5)

PRAS40 proline-rich AKT1 substrate 4049, S46 phosphorylated p5350, p53 phosphoprotein p53, p38α mitogen-activated protein kinases 14, ERK1/2 extracellular signal-regulated kinases1/2, EGFR
epidermal growth factor receptor,MSK1/2mitogen and stress-activated protein kinase 1/2, PYK2 protein tyrosine kinase 2, Hsp60 heat shock protein 60, JNK1/2/3 c-Jun N-terminal protein kinase 1/2/3,
AMPKα1 AMP-activated protein kinase α1, PLCγ phospholipase C γ1, Fgr Feline Gardner-Rasheed proto-oncogene, WNK1 WNK lysine-deficient protein kinase 1 isoform
Protein extraction and phospho-kinase assay was performed in treated and vehicle human microdissected HFs following the manufacturer’s protocol (for Supplementary Information, see Methods
section). Summary of kinases upregulated at least (1.8×-fold change of the control) or downregulated by >50% of the control by Sandalore® (50 and 500 µM, respectively)
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hair cycle staging. Therefore, hair cycle staging and the HCS are independent read-
out parameters that complement each other.

Quantitative (immuno-)histomorphometry. Staining intensity was evaluated in
well-defined reference areas by quantitative (immuno-)histomorphometry 31,32,
using NIH ImageJ software (NIH, Bethesda, MD, USA).

Statistical analyses. All data are expressed as mean ± SEM (and variance is dif-
ferent between the groups) and were analyzed by one-way ANOVA or
Kruskall–Wallis test and Dunn’s multiple comparisons test as post hoc test when
more than two groups were compared or Student’s t-test or Mann–Whitney test
when only two groups were compared (GraphPad Prism 6, GraphPad Software,
San Diego, CA, USA) after performing d’Agostino and Pearson omnibus normality
test. P < 0.05 was regarded as significant.

Data availability
The data discussed in this publication are available from the authors and the microarray
data have been deposited in NCBI’s Gene Expression Omnibus (GEO) and are accessible
through GEO Series accession number GSE102887.
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